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Abstract 

This paper introduces an ongoing PhD thesis carried out in the 

framework of a research project, in which an application for 

speech and language therapy support of German speakers with 

aphasia is developed. Work completed in the selection and 

implementation of ASR solutions, and creating a semantic 

analysis pipeline is described, and challenges and future work 

perspectives are discussed. 

Index Terms: automatic speech recognition, aphasic speech, 

speech and language therapy, digital health. 

1. Introduction 

Aphasia, literally translated from (Ancient) Greek as 

„speechlessness“ [1], is an acquired language disorder due to a 

focal brain injury. It affects some or all language modalities, 

which makes communication difficult and decreases the quality 

of life. High intensity and duration of speech and language 

therapy (SLT) bring certain benefits to communication 

improvements [2-3]. However, not all people with aphasia 

(PWA) have access to sufficient SLT (e.g., due to lack of 

specialists or geographical remoteness). Research shows the 

efficiency of supplementing in-person therapy with 

independent usage of digital therapy solutions [4].  

Various researchers have explored the possibilities of automatic 

assessment of speech produced by PWA (see, for example, [5-

6]). Naming-oriented semantic exercises have been automated 

with the help of automatic speech recognition (ASR) for 

Portuguese [7], English [8-9], and German [10-11]. The latter, 

however, are not in active use yet. When the answer is only 

rated as correct/incorrect, with no further analysis of users’ 

errors, the reported acceptance/rejection accuracies on PWA’s 

speech range from 75% [8] to 89.5% [9]. 

The current project [12] focuses on developing a mobile 

application for German-speaking PWA that will provide 

personalized detailed feedback in naming and other exercises. 

In the present PhD research, ASR and further text processing 

solutions are used for multilevel feedback: phonemic/phonetic, 

semantic, and grammatical. To build the corresponding 

pipeline, the following questions need to be addressed. 

1. Which existing (open-source) ASR solutions are suitable for 

the task-specific speech of German-speaking PWA?  

2. How can selected ASR solutions be improved and/or adapted 

for the purposes of SLT? 

3. How can a combination of selected ASR solutions and 

existing tools for semantic and grammatical analysis serve for 

speech production errors analysis? 

4. What are patients’ and therapists’ attitudes to the proposed 

digital solution? 

2. ASR solutions 

2.1. Model selection 

Evaluation of the ASR systems consisted of several steps. First, 

the suitability of more than 50 open-source ASR solutions was 

assessed with the help of several speech recordings from 

different corpora, including PWA’s speech [13-14]. Based on 

the ranking of error rates, 13 models were selected for further 

evaluation. In the absence of necessary data from PWA, test 

material from other corpora with atypical speech (presenting 

abnormalities similar to PWA’s speech) was considered for 

further evaluation, namely speech of adult cochlear implant 

(CI) users and normal-hearing speakers as a counterpart [15], 

and speech produced under alcohol intoxication the same 

speakers under no intoxication as a counterpart [16]. 

Additionally, two small datasets with aphasic speech were used. 

AvEv recordings (39 single words) were obtained from four 

PWA who had taken part in an avatar evaluation experiment 

was used [17]. UniSt recordings (79 single words) had been 

made during Aachen Aphasia Test (AAT) [18] sessions and 

were obtained on request from Stuttgart University Institute for 

Natural Language Processing [19]. 

Finally, four open-source ASR models were selected for the 

backend of the app [20-23] based on character error rates, the 

number of empty outputs, and the number of precisely 

recognized words. Three of these models [20-22] are to a 

certain extent independent from pronunciation and language 

models and are suitable for phoneme-level pronunciation 

analysis, while the fourth model [23] gives only existing 

orthographic forms as output, which is more suitable for 

subsequent semantic and grammatical error analysis. All four 

models are to a greater or lesser extent robust to speaker gender 

and age. The experiments suggest that for better single-word 

recognition the audio samples should be not too short and 

pronounced neither too slowly nor too fast (i.e. intentionally 

speeded up).   

2.2. Post-hoc implementation of non-standard phonetic 

features 

Although the selected ASR models present a possibility for 

fine-tuning, the project lacks adequate data for model 

(re)training. Thus, it was decided to research the possibility of 

applying the knowledge about non-standard phonetic features 

post hoc to ASR output. The methodology combines generating 

alternative pronunciations based on non-standard patterns [24] 

and using alternatives for evaluation [25].  



First, the orthographic ASR output form is phonemized using 

automatic grapheme-to-phoneme conversion (g2p) [26]. Then, 

the phonetic transcription is subject to modifications based on 

the non-standard phonetic features. The first set of features 

considers aphasic speech: syllabification with greater pauses 

between syllables, which causes recognition of syllables as 

separate words; and slow and careful speech production, which 

causes vowel prolongation. The next set comprises relevant 

dialect features selected from the Thuringia-Upper Saxon 

dialect group [27-29] due to the geography of the project and 

the data available for the experiments. The modified 

transcription is then compared to the target transcription, and 

the error rate (ER) threshold is applied. If the ER is lower than 

the threshold, the error is considered phonemic/phonetic, and 

semantic otherwise (see example in Figure 1).  

Figure 1: Error analysis pipeline – attempt 1. 

The proposed method was tested on the 412 single-word 

recordings made during AAT sessions and obtained on request 

from the University of Leipzig Medical Center. It has proven to 

work: after the implementation of each feature set, ASR error 

rates decrease significantly, general acceptance/rejection 

accuracy improves, and the accuracy of error attribution also 

increases. 

2.3. Challenges and future work 

The selected four models present a possibility to be fine-tuned: 

to PWA speech or speech of a particular user in a customized 

version, and to single-word recognition task rather than 

continuous speech recognition. This requires a certain amount 

of corresponding data. Obtaining the data from PWA, possible 

anonymization of such data, and further application for model 

fine-tuning are seen as the following steps. The complete 

solution should be tested “live” to take into account the 

corresponding audio quality and processing time. 

3. Semantic and grammatical analysis 

3.1. Semantic analysis pipeline 

If the answer of the speaker does not pass the ER threshold (i.e. 

is not recognized as correct or containing phonemic/phonetic 

errors only), it is subject to further analysis. In particular, it must 

be compared to the target in terms of their semantic relationship 

and distance. The current semantic analysis is built upon 

GermaNet – a semantic network for the German language [30]. 

It consists of two parts: semi-automatic enrollment of the 

exercise item into the system and the analysis of a semantic 

error.  The latter includes but should not be limited to the 

recognition of hyponymy/hypernymy and belonging to the 

same semantic (sub)category. If the answer is not recognized as 

an existing word (i.e. contains both semantic and 

phonemic/phonetic errors), a search for close orthographic 

matches is performed, and the match that is semantically the 

closest to the target is subject to the relationship analysis 

described above. 

Current work is concentrated on including further types of 

semantic relationships in analysis, for example, synonymy, 

antonymy, and meronymy/holonymy. Close orthographic 

matches search is extended with close phonemic matches 

search, using automatic g2p. On the other hand, the search is 

thought to be limited to the members of the target lexical and 

semantic categories, while the final assumption is based on both 

semantic and orthographic/phonemic distance to the target. 

3.2. Challenges and future work 

The current pipeline, or GermaNet in general, has certain 

limitations. First, it is mostly suitable for the words of the same 

lexical category (except for causative relationship, pertainyms, 

and participles), so that the relationship between “to eat” and 

“food” would not be recognized. Second, GermaNet takes only 

lemmas as input, which makes it necessary to implement an 

additional step with a lemmatizer. Further limitations can arise 

from a mismatch of the semantic categories in typical SLT tasks 

or a broader common understanding of language and 

GermaNet. Exploring other semantic networks (e.g., BabelNet 

[31]), adding grammatical analysis, elaborating more intuitive 

semantic categories, and joint implementation with selected 

ASR solutions will be addressed next.  

4. Users’ evaluation 

The automatic error analysis process includes the following 

components: ASR, post-hoc phonetic features implementation 

(if applicable), phonemic/phonetic error analysis (if 

applicable), semantic and grammatical error analysis (if 

applicable), and issuing corresponding feedback. 

Based on this general pipeline, digital exercises are to be 

designed and implemented in an app and then tested in SLT 

practice. A questionnaire is then designed to collect therapists’ 

and patients’ opinions on the exercises. Such parameters as, for 

example, plausibility, clarity, and user-friendliness should be 

assessed. The answers will be evaluated both quantitatively and 

qualitatively, and compared between the subsets. Based on the 

feedback, necessary changes or suggestions can be made to 

improve the solution (cf. [32]). 

5. Limitations 

The greatest limitation of the current work is the lack of relevant 

data. ASR solutions were mostly tested with other atypical 

speech and to much less extension with aphasic speech. 

Furthermore, the analyzed data mentioned in this paper are not 

suitable for ASR model (re)training or adaptation.  

On the other hand, few semantic errors are present in the data, 

and the examples to test the semantic analysis pipeline have to 

be constructed artificially. The current basis for semantic 

analysis, GermaNet [30], presents certain limitations on its 

own, described above in the corresponding section. 

The current project is a regional one and therefore is focused on 

the German language, in particular on the dialects of the 

Thuringian-Upper Saxon group. However, general principles 

and pipelines elaborated as the result of the present research can 

be scaled to other dialects and languages. 
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1. Motivation
As automatic speech processing systems have grown more ubiq-
uitous and relied upon, there has been significant complemen-
tary study examining their biases. This study tends to come
through the lens of statistical parity, i.e. whether all subpopu-
lations are treated equally [1]. As is noted in [2]: “no dialect
is inherently more or less intelligible”; in other words, there
is no natural hierarchy in merit of access to speech processing
systems. Hence, if our speech processing systems treat some
speaker groups better than others, then they are suboptimal.

Most study of fairness/bias in speech processing has come
through the lens of automatic speech recognition (ASR), which
will likewise be the focus of this paper. ASR lends itself in-
tuitively to fairness analysis, given the relatively unambiguous
nature of the ASR task, transcription. Indeed, by measuring the
difference in transcription error rate between various speaker
groups, we are measuring the most significant manifestation of
bias in ASR systems. Thus, reducing performance difference
in ASR is a societally motivated goal, and one whose improve-
ment can be relatively objectively measured.

2. Related work
There has been significant study in measuring fairness and bias
in ASR models1. All studies that on bias in ASR that I have
reviewed measure fairness through the lens of statistical parity
in model performance as measured by word error rate (WER).
Given two speaker groups, A and B, studies investigate whether
ASR models have statistically significantly lower average WER
for A than for B. The choice of speaker groups tends to follow
relatively objectively measurable demographic attributes, such
as age, gender, native language, or dialect. The definition of
these speaker groups is thus semantically motivated, in that it is
in the interest of societal equality for them to be treated equally
by ASR systems. This framework of statistical parity is useful
for its simplicity; however, it leaves for room for improvement,
as I will discuss further (in Section 4).

2.1. Bias identification in ASR models

Unfortunately, there are many semantically motivated speaker
group pairs which are treated unequally by ASR. I will highlight
several here; however, note that this list is far from exhaustive.
• Gender bias in ASR has been studied extensively in various

languages [3, 2, 4, 5], though the results are varied - some

1For the purposes of this article, as a reflection of terminology used
in the literature, I consider those terms to be exact complements - i.e.,
a model that exhibits bias against one speaker group is not behaving
fairly towards that speaker group, and vice versa. See Section 4 for
further discussion of this.

studies find men favored, others find women favored, and still
others find no statistically significant discrepancy. One con-
sistent observation is that women are often under-represented
in corpora, though the performance impact of this relative
paucity is likewise varied and might depend on the corpus
[6, 7, 8].

• ASR models have been shown to be biased against non-native
speakers of several languages, with multiple studies demon-
strating this for English [9, 10], Mandarin [8], and Dutch
[11, 12, 8], on the order of 100% worse [11]. ASR perfor-
mance does improve with improving language ability [8].

• Different dialects are not all transcribed equally well by ASR
systems, a result replicated over multiple studies in several
languages, such as English [13, 14, 5, 15, 16, 17], Portuguese
[18], and Dutch [12]. Despite each dialect being equivalently
valid, some are much better recognized by ASR systems,
likely due to greater representation in training corpora.

2.2. Studies in bias reduction

There are two main strategies for creating fairer ASR mod-
els. The first strategy is to train on datasets with better cali-
brated speaker group balance. Models that see more data from
a specific speaker group generally perform better on it [19, 8]
(though not always [7]); thus, in order to improve the perfor-
mance of a speaker group, increasing its abundance in the train-
ing corpus is a simple way to achieve this. In the extreme
case, models trained exclusively on single-speaker-group cor-
pora (such as only women, or only speakers of AAVE dialect)
can perform better on that target speaker group than models
that have seen more varied data [16], though not always [7].
Meanwhile, many ASR corpora (such as CommonVoice [20]
and SWITCHBOARD [21]) are unbalanced in some fundamen-
tal characteristics, such as age, gender, or accent of speaker;
creating fairer mainstream training corpora would likely result
in fairer models. Furthermore, intentional dataset curation and
data quality are known to be of undervalued importance in ma-
chine learning in general, thus the strategy of smarter data cura-
tion ought not be overlooked [22].

The second strategy for creating fairer ASR models is to
implement training strategies that produce fairer models for a
fixed dataset. There are several common approaches to this end:

1. Data augmentation techniques such as Voice Conver-
sion (VC) [11] involve synthesizing voices from under-
represented speaker groups to supplement unbalanced cor-
pora. These techniques are motivated by two observations:
first, greater training corpus representation tends to lead to
better treatment by ASR; and second: collecting highly rep-
resentative corpora is a tedious and expensive process.

2. Another approach to making fairer models is to intentionally



blind them to differences between speaker groups. Domain
adversarial training (DAT) trains the speech model to fool a
discriminator that attempts to identify the speaker group asso-
ciated with each utterance [23]. This too has shown promis-
ing results for a small number of speaker groups.

3. There has been work in Domain Enhancing Training
(DET), an application of multi-task learning (MTL), to make
models more aware of the speaker group of the utterance
they are attempting to transcribe. For example, forcing the
model to learn a transcription objective and dialect classifier
in parallel has proven fruitful [24, 25, 26]. DET is essentially
the opposite of DAT, as rather than teaching a model to be
domain-agnostic, we are teaching the model to “lean into”
domain idiosyncrasies.

4. Finally, there are models which integrate separately calcu-
lated speaker group embeddings into the ASR pipeline
[27, 28]. Speaker group embeddings are concatenated (or
summed), either to input features prior to feature extraction,
or the output of feature extraction and prior to the down-
stream layers (in a hybrid setting). Speaker group embed-
dings can help the model contextualize speech based on the
speaker identity.

There has been limited study comparing these bias reduc-
tion methods amongst each other. Some studies have shown
DAT to be more effective than DET, and VC more effective than
DAT, though further study is necessary. However, many of these
methods can be used in parallel, where they tend to complement
each other [29, 23, 11, 30].

While each of these methods has shown promise, they all
suffer from the weakness of needing to explicitly define under-
represented speaker groups. This requires more overhead in
(future) corpus creation, and potentially discriminates against
some speaker groups which are not explicitly targeted.

3. Research objectives
3.1. Non-enumerative fairness

The first main research objective of my thesis research is to
develop unsupervised speaker group embedding discovery
methods, as an improvement upon method (4). This is moti-
vated by the goal of zero-shot speaker group adaptation, which
for existing enumerative methods is not well achieved. [28, 27].
Furthermore, speaker groups which are not learned using or de-
fined by explicit labels reduces the need for metadata-labeled
training data. Unsupervised speaker group embeddings will
also be able to target multiple speaker group dimensions simul-
taneously, such as age and accent, for example.

There has been some scholarship aimed at non-enumerative
fairness enforcement, such as [31], which performs automatic
cohort discovery based on predicted ASR failure. The method I
am currently developing aims to use clustering methods, such
as k-means or Latent Dirichlet Allocation (LDA, as inspired
by [32]), to define and map each speaker to a continuous
speaker group embedding space. Preliminary results of this
work show that topic distributions generated using LDA on dis-
cretized audio segments contain information corresponding to
some speaker attributes, such as gender, age, and accent. Table
1 shows macro F1 scores of linear regressions predicting three
different speaker group features based on unsupervised LDA-
based speaker embeddings. The speaker embeddings are trained
on a sample of English CommonVoice data and for increasing
number of topic k, and tested on unseen utterances from the
same corpus. Note that increasing k increases utility in pre-

dicting the three features. Furthermore, the fact that we do not
achieve perfect classification accuracy is not a problem; such
analysis simply serves to determine whether any relevant infor-
mation is contained within these unsupervised embeddings.

Table 1: LDA embeddings contain speaker group information

k = 2 3 10 20 35 50 100
age 0.28 0.37 0.39 0.41 0.41 0.41 0.41
gender 0.65 0.84 0.88 0.91 0.90 0.90 0.91
accent 0.05 0.12 0.13 0.15 0.18 0.20 0.20

3.2. Interpretability/Explainability of deep speech process-
ing models

The better we understand the inner workings of our models, the
better we can steer them towards fair behavior. I will build on
works like [33, 34], which identify which layers are primarily
responsible for modelling acoustic or linguistic features, as well
as works like [27] which attempt to distinguish between differ-
ent accents in various embedding spaces. Furthermore, I will
apply work from causal mediation analysis to speech networks,
to determine which layers or neurons in different networks are
responsible for which low-level aspect of speech processing, as
has been done for text-based networks [35].

There is ample opportunity for scholarship in better under-
standing the mechanisms behind which fairness enforcement al-
gorithms actually work. Furthermore, with a more nuanced un-
derstanding of the functioning of each layer (or neuron), I will
be able to more precisely consider new learning objectives or
architectures to promote fairness.

4. Challenges
4.1. Insufficient metadata

In order to test for statistical parity in ASR performance, one re-
quires datasets that are labeled with precise speaker group meta-
data. While some datasets contain useful metadata [36, 20],
these are the exception, rather than the rule; furthermore, ex-
isting metadata is often insufficiently precise or incomplete. In
general, speaker group metadata cannot (and/or may not, for
privacy reasons [37]) be reverse-engineered. Furthermore, col-
lecting a dataset (with speaker group metadata) is a long and
challenging process, further complicated by the fact that pre-
cisely which metadata I deem “useful” might change over time.

4.2. Simplicity of performance difference measurements

Simple statistics like statistical parity are straightforward to im-
plement, easy to understand, and provide a useful rough picture
of which speaker groups are treated better than others. They are
therefore widely used in the ASR bias literature. However, they
are not consummate measures of a model’s treatment of specific
speaker groups. Not all transcription errors are created equal,
and to have a deeper understanding of model fairness, it is im-
portant to study these in more intricate detail. There has been
limited work to this end; for example, authors in [15] examine
how ASR systems handle grammatical differences in the AAVE
dialect of English, which informs the analysis of transcription
errors the system makes. As I continue my work on fairness,
I hope to develop more nuanced fairness metrics founded on
semantic in addition to syntactic transcription quality, such as
described in [38]. This will hopefully guide further fairness en-
forcement efforts more precisely towards speaker groups which
are more lacking equal treatment.
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Abstract
Recent advancements in Artificial Intelligence have unveiled
promising prospects for multidisciplinary research, indicating
a significant evolution in the field. As research continues, our
focus is directed toward Multilingual Speech Translation in the
Indian context. India is the most populous nation having rich di-
verse cultures. India stands out with people speaking more than
100 languages, however, none holds the status of National Lan-
guage. With this linguistically diverse and intricate landscape,
our research aims to offer innovative solutions to the preva-
lent communication challenges. The foundation of our idea is
built on 3 pivotal Research Problems – language identification,
speech recognition, and machine translation, each encompass-
ing intricate and nuanced Research Questions (RQs). Within
the scope of this paper, we present the RQs that are currently
under investigation and give a brief outline of our strategies and
methods for tackling these RQs.
Index Terms: Language Identification, Speech Recognition,
Machine Translation, Indian Languages, Code-Mixed

1. Introduction
India, a nation known for its linguistic diversity and status as the
most populous country globally, exhibits a rich cultural heritage
across various domains such as history, language, cuisine, and
more. The linguistic landscape of India is characterized by the
prevalence of multiple languages, with data from the 2011 cen-
sus1 indicating that 26% of the population is bilingual and 7% is
trilingual, underscoring the country’s diverse linguistic legacy.
To safeguard this heritage, the Constitution of India2 has des-
ignated English and Hindi as the official languages, while con-
ferring Scheduled Language status upon 22 languages which
encompass a range of language families.

Our work motivation stems from addressing the challenge
of communication barriers among individuals, where the mode
of communication relies on either English or Hindi. A major
problem related to solving the challenges is the amalgamation
of languages. It is imperative to note that due to the multilin-
gual nature of Indians, English or Hindi often gets blended with
native languages. This phenomenon is termed as Code-Mixing
and code-mixed utterances pose a significant challenge to effec-
tive communication among the populace, particularly in rural
regions. To mitigate these communication hurdles, our propo-
sition involves developing a Speech Translation system, com-
prising a sequence of Language Identification (LI), Automatic
Speech Recognition (ASR), and Machine Translation (MT) sys-
tems, tailored specifically for Indic languages.

1https://censusindia.gov.in/census.website/data/census-tables
2https://www.mea.gov.in/Images/pdf1/Part17.pdf

2. Research Problems
This section outlines the tasks that are at the center of our atten-
tion. Figure 1 represents the schematic diagram of the proposed
Multilingual Speech Translation System for code-mixed Indian
Languages.

2.1. Language Identification of Speech Utterances

RQ1: Sentence Level: How to identify the language of utter-
ances?
RQ2: Word Level: How to identify the language of each word
from a multilingual Speech?

2.2. Speech Recognition

RQ3: Monolingual: Given an audio file of monolingual
speech, how to transcribe the speech?
RQ4: Multilingual Code-Mixed: Given an audio file of an un-
known language, how to transcribe the speech with each word
into its respective script?

2.3. Machine Translation

RQ5: Many-to-Many Translation: How to translate text from
any source language Xi∈n to any target language Yj∈n using a
single MT system, where there are n languages involved? Ad-
ditionally, the system should be able to deal with code-mixed
text input.

3. Methodologies
RQ1 and RQ2: The process of Language Identification (LI)
holds significant importance as a preliminary step in the domain
of ASR, focusing on recognizing a spoken utterance. Present-
day systems capable of handling speech in multiple languages
necessitate users to specify the language beforehand. The cru-
cial role of LI emerges in situations where ASR systems strug-
gle to comprehend spoken languages in multilingual contexts,
especially for diverse linguistic landscapes such as India.

For RQ1, we proposed a Convolutional Recurrent Neural
Network (CRNN) designed to process the Mel-frequency Cep-
stral Coefficients (MFCCs) features of utterances [1]. Our in-
vestigation involved comparing the CRNN framework with the
CRNN with the Attention framework. Additionally, our re-
search evaluated the resilience towards various languages and
closed language groups, achieving high scores for accuracy.
The analysis in Table 1 presents an overview of performance
across different datasets and linguistic settings. Our findings
[1] also highlight the framework’s robustness against noise in-
terference and its potential for adapting to new languages. No-
tably, the CRNN with the Attention framework showcased a
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Figure 1: Schematic Diagram of Multilingual Speech Translation System for code-mixed Indian Languages.

comparable performance to the CRNN framework, but the At-
tention mechanism, despite incurring additional computational
complexity, did not consistently outperform the CRNN frame-
work.

For RQ2, we plan to use the transformer framework [2] that
mirrors the concept employed in MT, where the encoder compo-
nent of the framework is responsible for processing the source
sentence, while the decoder handles the target sentence. In this
context, we initialize the encoder module with speech features
and the decoder module with the sequences of the words’ lan-
guage. The choice of speech features such as MFCCs, Filter
Banks, or Wav2Vec2 [3] may vary depending on the character-
istics of the audio environment.

Framework CRNN
CRNN

with
Attention

Indian Dataset 0.987 0.987

Close Language
Cluster

Cluster 1 0.974 0.980
Cluster 2 0.999 0.999
Cluster 3 1 0.999

European Language
Dataset

No Noise 0.967 0.966
White Noise 0.912 0.888

Table 1: A comprehensive performance analysis

RQ3 and RQ4: The proposed ASR addresses 2 distinct re-
search scenerios. The prevailing state-of-the-art (SOTA) frame-
works for ASR predominantly rely on monolingual data. Re-
cent advancements such as OpenAI’s Whisper and AI4Bharat’s
IndicVoices have set a performance benchmark for Indic Lan-
guages. Notably, ASR proposed by OpenAI and AI4Bharat ne-
cessitates prior language declaration from humans. Our pro-
posed research strategy aims to declare the sentence-level iden-
tified language from the output of RQ1 and word-level identi-
fied language from the outputs of RQ2 to the framework with-
out human intervention. We propose to use a sequence-to-
sequence transformer framework with a double encoder and sin-
gle decoder. The framework will be trained by replacing the
decoder < BOS > token with the identified < Lang Tag >
token from RQ1. One encoder of the proposed framework will
be the sequence of language tags and the other will be sequences
of speech features. Especially for RQ4, it is important to under-
stand the acoustic cues when a person changes the language in

utterance making communication more difficult. To mitigate the
challenge we provide the sequence of language tokens identified
from RQ2 which will help in post-processing. The final out-
put of RQ4 will be text transcription with each word language
tagged. For example, W1#Li∈n W2#Li∈n · · · Wk#Li∈n

will be the output of RQ4, where there are n languages in-
volved, W are the words and k is the length of the sequence.

RQ5: For MT, the majority of researchers still rely on
the Transformer-based MT Systems where a single source lan-
guage and single target language are involved. Our proposed
MT system will translate from any source language Xi∈n to
any target language Yj∈n using a single system, where there
are n languages involved. We plan to use the transformer-based
framework, where < BOS > will be replaced by respective
< Lang Tag > for both the encoder and decoder. Source
< Lang Tag > with word-level language tags will be used
for code-mixed cases. Our intuition behind the idea is that ini-
tializing with a < Lang Tag > and word-level language tag
will help the framework to learn the semantics and syntax, re-
spectively, of specific languages better. The system will act ac-
cordingly for code-mixed sentences as MT input by capturing
the trigger point of language switching. This can be achieved by
introducing word-level language tags with each word in the sys-
tem. Overall, the objective of the proposed system is to produce
SOTA models in Multilingual Code-Mixed Machine Transla-
tion.

4. Conclusion
In this paper, we presented our ideas for Multilingual Speech
Translation in Indian Languages where multiple languages with
multiple dialects are present. Furthermore, we shared our ideas
on approaches to solving communication problems. There is
further scope for research and improvement in existing systems
due to low resources and dialect variations in Indian Languages.
In the future, we would like to create a singleton Multilingual
Speech Translation system without cascade frameworks for In-
dian Languages.
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Abstract
Speech technologies have become increasingly efficient and
prevalent in various domains. However, there is growing con-
cern that these technologies may perpetuate biases and unfair-
ness in outcomes, particularly against people from marginal-
ized communities. “Bias” refers to a performance gap that dis-
proportionately disadvantages certain groups or individuals as-
sociated with protected attributes. For example, an Automatic
Speech Recognition (ASR) system would be considered biased
when there is a significant difference in its performance with
different genders. Previous research has proved that the perfor-
mance of speech technologies is influenced by various factors,
such as the speaker’s gender or race. Yet, there is a lack of
research on practical solutions to mitigate these biases and pro-
mote fairness in speech technologies. My project aims to ad-
dress the current limitations in existing research and investigate
novel methods to improve the fairness of speech technologies.
The project will also address the challenges in working with
speech data from people with different language backgrounds
and health conditions. In particular, Arabic and cognitive as-
sessment tools will be used as case studies to assess the effec-
tiveness of the proposed bias mitigation strategies in sparse data
settings. This work has the potential to inform the development
of inclusive speech technologies in low-resource domains.
Index Terms: Automatic speech recognition, gender bias, data
augmentation, pitch manipulation, fairness

1. Motivation and research questions
Standard frameworks and effective methods to address notions
of fairness in speech technologies are still not well established.
While previous research has proposed various bias mitigation
methods, they are not fully applicable to speech systems. Bias
in speech technologies may arise from the unequal distribution
of demographic groups in training sets [1], in transcripts’ cor-
rections [2, 3], or when using a system designed and trained in
one context for a different purpose and target users [4, 5, 6, 7].
In speech research, studies on bias have included more empha-
sis on speakers’ demographics [1, 8]. The most common types
of demographic bias relate to gender [9, 7], age [7], race [10],
accents and language variants [11, 4, 7, 12]. As there are artic-
ulation differences, such as in accents or speaking style, imbal-
anced datasets can lead to a mismatch between the speaker and
the trained acoustic model [3]. Consequently, the speech mod-
els do not work equally well with all groups of people.
In low-resource domains, sparse datasets represent another
challenge that has not been addressed yet. This is the case
in healthcare speech and language technologies applications,
where datasets are often small and not in the public domain be-
cause of ethical concerns. Predominantly, one of the biggest
challenges in healthcare speech technologies is the scarcity of
speech datasets particularly related to speech disorders [13]. In
healthcare systems, biased systems lead to diagnostic inaccu-

racies, health disparities, and unequal access to treatments or
services [14]. For example, biases in ASR systems that tran-
scribe patients’ discussions can lead to misinterpretations [5].
On the other hand, much work has shown the discrepancies in
speech systems’ performance and quantified the bias with the
African American language [5, 11], Dutch [4, 3], but not with
other low-resourced languages. One of the least studied in re-
gards to bias is the Arabic language despite being one of the
top world languages [15]. With limited and unbalanced speech
datasets, it is crucial to recognize and address these biases to
foster the development of fairer speech technologies.
In addition, most research studies focus on representation bias
in data while many other bias types across the machine learn-
ing pipeline still need solutions. The interplay of various biases
should also be evaluated rather than looking at one bias at a
time. Few studies have addressed the bias against other demo-
graphics such as nationality, and disability and focused mainly
on gender. Speech-specific attributes like dialect, voice timbre,
and prosodic attributes have not been considered. The project
thus aims to address two main research questions:
• RQ1: How can bias against speakers’ demographics be miti-

gated with minimal performance degradation in speech tech-
nologies?

• RQ2: How effective are specific bias identification and miti-
gation strategies in improving outcomes within low-resource
domains, such as Arabic and healthcare speech systems?

By addressing these questions, this project aims to contribute
valuable insights to inform specific methods to combat biases
in speech technologies leading to fair speech systems.

2. Results so far
Several studies showed a correlation between the gender distri-
bution in the training set and the performance of speech mod-
els, however different studies have come to different conclu-
sions [3, 9, 16, 17]. The contradictory results suggest that other
factors, besides the speakers’ gender and demographics, might
affect the performance. Therefore, I initially conducted a series
of experiments to investigate the following hypothesis:
Hypothesis: The gender distribution within the training set,
alongside other factors such as text difficulty, semantic simi-
larity, and out-of-domain test sets, significantly impact the per-
formance and fairness of ASR systems.
Artificial bias was induced by creating subsets from the orig-
inal LibriSpeech [18] training set with varying percentages of
women’s audio files 1. Each training subset was used to fine-
tune Whisper’s small model [19]. The Word Error Rate (WER)
was used to compare each speaker’s performance in the test set
across the different models. The bias was calculated as the dif-
ference between the women’s and men’s WERs [3]. The re-

1Acknowledging that the gender spectrum is more diverse, the focus
on these two genders is driven by their representation in the dataset used
in this investigation.



sults revealed an irregular pattern between the gender ratios in
training data and ASR performance as shown in Figure1a, chal-
lenging the notion that adjusting these ratios alone can enhance
the ASR’s performance. The imbalanced gender distribution
also did not consistently correlate with improved recognition
of the over-represented gender. The findings further suggested
that speakers’ pitch (F0) variability in the training set signifi-
cantly affects ASR performance, emphasising the importance
of a holistic approach to dataset composition. The text analy-
sis showed that the difficulty and semantic similarity levels be-
tween the training and test sets were similar in all subsets and,
therefore, were not contributing factors towards the differences
observed in the performance.

(a) Mean WERs (b) Text Readability

(c) Pitch distributions

Figure 1: Illustrations of the ASR performance, text analysis
and pitch distributions in the evaluation of the Test Other set

Based on the initial analysis, the worst-performing models in
terms of lowest accuracy and biggest bias size were trained on
data consisting of 90% and 100% women audio files (Figure1a).
The two seemingly prominent factors among my investigated
factors (i.e., gender representation, pitch distribution, text read-
ability and semantic similarity) were gender and pitch distribu-
tions. I then attempted to reduce the gender bias by augmenting
data while considering these two factors; gender and pitch. I
employed data augmentation through pitch shifting with three
selection strategies to increase the initial training set size:

1. Gender balanced, to achieve a balanced gender distribution;
2. Pitch distribution balanced, to match a target normal distri-

bution of pitches, regardless of gender; and
3. Random selection, without considering gender or pitch.
In each scenario, I trained the model with the initial 90% women
dataset plus the augmented data and evaluated the performance
on the TestOther set. The results showed that gender-balanced
and random augmentations yielded the best overall WER and
reductions in bias. Random augmentation provided the low-
est WER for women but did not reduce bias as effectively
as gender-balanced or pitch-based augmentations. Pitch-based
augmentation achieved the lowest bias size. However, the im-

provements were not significant, suggesting that these augmen-
tation strategies may not be enough to achieve fair results in
speech recognition tasks. To confirm whether the observed pat-
terns are linked to the speech mode or domain, I utilized EdAcc
[20] as an alternative domain evaluation set. The results illus-
trated that while certain augmentation methods may improve
fairness, they can also negatively impact overall performance.

3. Current and future research directions
The initial experiments revealed that adjusting the gender ra-
tios and using data augmentation did not significantly improve
the model’s performance and fairness. Therefore, the next step
is to explore advanced pre-processing and in-processing tech-
niques, adjusting the training algorithm itself. My goal is to
propose a new bias mitigation method tailored specifically for
speech models and data, aimed at reducing the performance gap
between different groups. As new datasets have recently be-
come available with more labelled speaker demographics, I will
also investigate other protected attributes beyond gender, such
as age, ethnicity, and education level. Understanding the in-
terplay between these factors will help identify which biases
are most harmful. Subsequently, I will conduct case studies on
Arabic and healthcare speech systems to evaluate the proposed
bias mitigation strategies in important data-sparse settings. It is
anticipated that methods primarily tested on English-speaking,
healthy users may not perform as well in low-resource domains.
Therefore, I will address the challenge of working with data
from these domains and develop novel methods to ensure that
current speech technologies can effectively accommodate indi-
viduals with diverse backgrounds and health conditions.

4. Challenges
My research has several challenges, particularly due to lim-
ited data and resources. The scarcity of data is especially
pronounced in low-resource domains, i.e., Arabic and health-
related datasets, which further complicates the research process.
Unlike image and text data, speech data presents unique char-
acteristics and complexities, rendering the existing de-biasing
methods used in these other domains inapplicable. This necessi-
tates the development of novel approaches tailored specifically
for speech data to mitigate biases effectively in speech systems.
Furthermore, working with speech data presents relatively dis-
tinct challenges due to its unique characteristics. Speech data
is continuous and temporal, involving sound waves that require
complex preprocessing steps such as noise reduction and feature
extraction. Speech involves various acoustic-phonetic features,
including prosody (e.g. pitch (F0), loudness), and phonetic con-
tent (e.g. MFCCs, phoneme duration). These features make
speech data more complex to transform or augment. This com-
plexity differs from image data, which is spatially organized and
represented as pixel grids, and text data, which consists of se-
quences of words or characters. The preprocessing of images
and text often involves resizing and tokenization, respectively,
which are different from the procedures required for speech.
Mitigating bias in speech models is particularly challenging due
to the nature of speech data and the influence of factors like di-
alects and acoustic environments. Unlike bias mitigation meth-
ods in images and text, with speech, we must account for diverse
speaker demographics and varying recording conditions. Addi-
tionally, evaluation metrics for speech differ from those used for
images and text, necessitating innovative approaches for effec-
tive de-biasing in speech technologies.
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Abstract
Cross-corpus Speech Emotion Recognition (SER) is crucial for
various everyday applications. Existing studies in cross-corpus
emotion transfer tasks typically focus on constraining acous-
tic features to adapt features, domains, or labels across cor-
pora. However, acoustic features exhibit high variability and
instability due to factors such as speaker differences, domain
variations, and recording conditions. This study adopts a con-
trastive approach by using emotion-specific articulatory move-
ments as the foundational units for analysis. By taking a step
down from acoustics to more stable articulatory gestures, we
aim to improve emotion transfer in SER tasks. Our experiments
and analyses show interesting insights into the commonality of
these articulatory gestures, demonstrating their potential as re-
liable constraints for emotion transfer.
Index Terms: speech emotion recognition, articulatory move-
ments, cross-corpus, transfer learning

1. Motivation
Developing robust Speech Emotion Recognition (SER) strate-
gies is crucial for applications in healthcare, security, education,
and entertainment [1]. Current approaches in cross-corpus SER
models often address domain discrepancies through transfer
learning, semi-supervised learning, and few-shot learning [2,3].
Additional techniques include optimizing distance metrics (e.g.,
Wasserstein [4]), adversarial training to mitigate domain mem-
orization [5], and generating synthetic data using GANs [6].
Some studies also explore anchoring methods to facilitate emo-
tion transfer across corpora [7]. However, these methods pri-
marily rely on acoustic information as the predominant con-
ditioning factor, which is prone to variability and may not ef-
ficiently regulate emotion transfer across domains. Articula-
tory movements represent fundamental units of speech produc-
tion, governing physical speech movements and exhibiting less
variability than acoustic features influenced by external factors.
This study focuses on articulatory movements, which exhibit
greater consistency and stability across diverse speakers and en-
vironments. By identifying common articulatory gestures asso-
ciated with specific emotions across corpora and using them as
constraints for emotion transfer, our approach aims to enhance
the learning of emotional cues in cross-corpus settings.

2. Key Research Question
The primary objective is to determine if similar articulatory
gestures exist across different corpora that can be effectively
utilized for specific emotions. This exploration involves ana-
lyzing articulatory patterns across corpora to identify common
gestures. Once these common articulatory gestures are identi-
fied, the next challenge is to develop a method that uses them as

constraints to improve unsupervised cross-corpus SER. This in-
volves developing models that leverage this prior knowledge to
guide learning, thereby aligning the emotional modulation be-
tween two corpora, and improving the accuracy of cross-corpus
emotion recognition. This research aims to establish emotion-
specific articulatory gestures as a reliable feature to enhance the
generalizability of SER systems.

3. Methodology
3.1. Multi-Modal Affective Corpora

While the MRI and EMA systems can record articulatory move-
ments, such data are challenging to obtain. Numerous multi-
modal corpora include visual information. We utilize these vi-
sual datasets to analyze articulatory gestures. For this study, we
require corpora that include both speech and visual modalities.
We select the CREMA-D [8] and MSP-IMPROV [9] datasets
due to their diverse settings and multimodal nature. CREMA-
D comprises audiovisual recordings of actors performing emo-
tions in controlled conditions, providing both facial expressions
and vocal cues. MSP-IMPROV features improvised emotional
speech, capturing spontaneous emotional expressions through
both audio and visual data. Here, in examining articulatory
movements, our focus is on 12 mouth landmark points extracted
from visual data.

3.2. Articulatory Movement Analyses

Inspired by the phonetic anchoring work in the literature [7],
we focus on vowel articulation in this study. We extract all the
facial landmarks and pre-process them by aligning and normal-
izing the data so that the landmarks from both corpora are in
the same space. We conduct two experiments to identify ges-
ture commonalities: articulatory movement transition analysis
and emotion modulation similarity.

The first experiment, articulatory movement transition anal-
ysis, tracks how mouth shape evolves over time during speech
utterances, specifically focusing on vowel articulation. We
meticulously track the movement of mouth landmarks across
frames, calculating the Euclidean distance of each landmark
from its baseline position (the coordinates of the first frame).
We assume the first frame represents the beginning of pronounc-
ing the phoneme, serving as the neutral state. By summing these
distances for each timestamp and subsequently computing the
average change and standard deviation across multiple samples,
we gained insights into the temporal dynamics of mouth shape
variation. This experiment reveals that some gestures are com-
mon to certain emotions across the two corpora. For example,
Figure 1 shows the plot of this experiment for the Happy emo-
tion across different vowel articulations. We can observe that



Figure 1: Mouth landmark transition analysis over frames for different phonemes in Happy emotion, highlighting mean and standard
deviation across both corpora.

Table 1: Emotion modulation similarity (cosine similarity) over
CREMA-D and MSP-IMPROV corpora.

Angry Happy Sad
Mean ±STD Mean ±STD Mean ±STD

Overall 0.73 0.5 0.77 0.6 0.73 0.6
a 0.72 0.4 0.77 0.3 0.67 0.4
c 0.81 0.6 0.51 0.4 0.62 0.4
@ 0.74 0.3 0.68 0.3 0.73 0.5
E 0.73 0.4 0.75 0.5 0.71 0.6
i 0.74 0.3 0.83 0.4 0.71 0.7
u 0.78 0.5 0.71 0.2 0.74 0.4

the vowels /i/, /E/, and /a/ exhibit more consistent transition pat-
terns across frames.

For a deeper insight, our second experiment, emotion mod-
ulation similarity, aims to uncover commonalities in emotion
expression across different corpora, particularly concerning the
Neutral emotion. In this experiment, we conduct a comparative
analysis by subtracting Neutral emotion samples from those de-
picting specific emotional states. We meticulously analyze all
12 landmark points, including their x and y coordinates, as well
as time-series data, to capture the full spectrum of facial expres-
sion dynamics. Using cosine similarity metrics, we estimate the
degree of modulation similarity among sets of emotional sam-
ples within each corpus. Table 1 presents the similarity scores
alongside their mean and standard deviation. Our findings in-
dicate that while overall sentence modulations exhibit minimal
variation, different vowel articulations show varying levels of
emotion modulation similarity across specific emotional states.
For instance, during the Happy emotion, vowels /a/ and /i/ show
higher similarity compared to other vowels.

Our experiments have revealed insights that suggest in-
tegrating articulatory gestures for reliable emotion transfer in
SER tasks. Articulatory gesture anchoring could provide a sta-
ble foundation for enhancing cross-corpus emotion recognition.

3.3. Initial Cross-Corpus SER Results

We have shown the initial performance of cross-corpus SER
with our proposed Articulatory Gesture constraint (AGC) idea,
along with the baseline models for comparison. Table 2 presents
the performance across both corpora. Our proposed model
(AGC), which incorporates the loss with feature space reduc-
tion, constrained on articulatory gestures pre-knowledge, shows
competitive performance (achieving a UAR of 54.87% for
CREMA→IMPRO and 62.11% for IMPRO→CREMA). Due
to spatial limitations, we cannot elaborate further on the mod-
eling details. However, Table 2 indicates that our model AGC
does not yet outperform the Vowel-Anch model. This could be
attributed to several factors, such as the specific dataset charac-
teristics, the complexity of the emotion recognition task, or the
effectiveness of the articulatory gesture constraints compared to

Table 2: Cross-corpus SER performances (in UAR %) for 4-
category SER task, tested with CREMA-D as the source and
MSP-IMPROV as the target (CREMA→IMPRO) and vice-versa
(IMPRO→CREMA).

CREMA→IMPRO IMPRO→CREMA
Few-shot [3] 51.08 60.27

Ensemble [10] 52.41 61.95
Vowel-Anch [7] 55.33 63.18

AGC 54.87 62.11

vowel-based anchoring. Therefore, we are currently exploring
what could be the possible reason behind this performance dif-
ference and also exploring some alternative techniques to lever-
age the articulatory gesture in the SER task.

4. Key and Potential Challenges
Leveraging common articulatory gestures in cross-corpus SER
presents significant challenges. Firstly, accurately segmenting
facial landmark movements based on phonetics is complicated
by variability in speech patterns and emotions. Improving seg-
mentation accuracy necessitates exploring clustering methods
to categorize articulatory gestures based on physical character-
istics rather than solely relying on phonetic boundaries. Sec-
ondly, capturing articulatory gestures using facial landmarks
across more than one dimension and time-series data encounters
reliability issues influenced by lighting variations, facial poses,
and the complexity of facial movements.

5. Plans for the future and thesis roadmap
Moving forward, our research aims to address these challenges
effectively. We plan to investigate advanced clustering tech-
niques to enhance the segmentation of articulatory gestures in
speech data. Additionally, we will explore adaptive learning
functions to improve the robustness of capturing articulatory
movements across varying conditions. Our thesis roadmap in-
cludes developing and evaluating novel methods that leverage
stable common articulatory gestures as a foundation for enhanc-
ing cross-corpus SER.

6. Expected Contributions
By focusing on common articulatory gestures, which are more
stable and less affected by variability compared to acoustic fea-
tures, we aim to enhance the generalization of SER systems
across different corpora and domains. Our approach intends to
provide a more reliable foundation for emotion transfer tasks,
thereby improving the accuracy and effectiveness of SER mod-
els in recognizing emotions consistently across different con-
texts. This contribution is pivotal for advancing the applicabil-
ity and reliability of emotion recognition technologies in vari-
ous practical domains.
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1. Research Question & Motivation
Recent advancements in deep learning have significantly en-
hanced the performance of automatic speech recognition (ASR)
systems for several languages [1]. However, these advance-
ments are on the larger dataset, which is not true for low-
resource languages. This challenge is particularly pronounced
in India, where there are 1652 native languages, and 22 are
scheduled (official) languages. Owing to its diversity, most of
the Indian languages are low-resource languages compared to
other widely spoken global languages. To advance and innovate
in ASR for Indian languages, we chose the Sanskrit language,
which influences 19 out of 22 scheduled languages. Sanskrit
serves as a crucial starting point due to Sanskrit’s rich histor-
ical and linguistic background emphasizes these complexities
[2, 3].

2. Methodology
To advance in ASR for the Sanskrit language, we built
Vāksañcayah.

1, our Sanskrit ASR corpus, with 78 hours of
speech data spoken by 27 unique speakers (Sanskrit scholars)
[4]. It consists of 46K sentences and a vocabulary size of 91K.
The training dataset consists of 56 hours of audio data with 12
speakers (34,000 utterances), whereas the valid and test dataset
consists of 3 speakers each (6,004 utterances). The dataset was
prepared while accounting for several of the challenges, like
Sanskrit’s rich cultural heritage, its linguistic characteristics,
and the limited availability of resources in both speech and text.

To further enhance the efficiency of creating and refining
Sanskrit ASR datasets, we developed VAgyojaka, an open-
source post-editing and annotation tool for automatic speech
recognition (ASR) [5]. VAgyojaka is designed to reduce the
human effort required to correct ASR results. It adopts a
dictionary-based lookup method to highlight incorrect words in
the ASR transcript and provide suggestions by generating the
closest valid words. Our tool reduces post-editing effort and
time by one-third compared to traditional editing methods. Ad-
ditionally, VAgyojaka serves as an End-to-End Provenance tool
for Spoken Translation, facilitating post-editing and annotation
for ASR, machine translation (MT), and text-to-speech (TTS)
tasks, ultimately aiming to streamline the correction process
across these applications, as shown in Figure 1.

Using the Vāksañcayah. dataset, we propose a novel large-
vocabulary ASR system for Sanskrit, the first of its kind. Our
design choices, influenced by Sanskrit’s phonemic orthogra-
phy, include three encoding schemes for language model to-
kens: word-based encoding, byte pair encoding (BPE), and a

1This speech corpus can be accessed from www.cse.iitb.ac.
in/˜asr

Figure 1: Screenshot of the ASR Post-Editing tool

new vowel split encoding inspired by syllabic structure theories.
We use the Sanskrit Library Phonetic (SLP1) encoding scheme
to address redundancy in Unicode representations, which pre-
serves phonemic orthography. We focus on two graphemic rep-
resentations: native script and SLP1. We train a Time De-
lay Neural Network (TDNN) [6] based acoustic model and a
subword-based language model, forming a hybrid ASR system.
Additionally, we extend our findings to develop ASR systems
for Telugu and Gujarati, incorporating SLP1 adaptations for
these languages [4].

Traditional word-based ASR models struggle with out-of-
vocabulary (OOV) words and rare words in Sanskrit due to its
complex morpho-syntactic regularities and sandhi [7]. Sub-
word language models (LMs) help to some extent but still face
limitations in handling long-range dependencies and semantic
context, as shown in Figure 2.

bālakaḥ phalāni krītvā dvicakrikayā gṛham agacchat

bālakāḥ phalāni krītvā dvicakrikayā gṛham agacchan

a)

b)

pītāmbarāt phalam muninaiṣyata

pītāmbarāt phalam muninaiśyata

muninā
+

aiṣyata

pīta
+

ambara
Meaning: The fruit was desired from God, by the sage

Meaning: The fruit was ruled from God, by the sage

Meaning: Boy went home by cycle after buying fruits

Meaning: Boys went home by cycle after buying fruits

Figure 2: Examples of Linguistic Challenges: a) Semantic Con-
text (Split for compound and sandhied tokens are shown in
boxes) and b) Long Range Dependencies in Sanskrit Text.

To tackle these challenges, we propose an approach
that combines a subword-based language model with a post-
processing module enriched with morpho-syntactic informa-
tion. We used the same TDNN based acoustic model and a
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Figure 3: Different phases of search space of the proposed
model for sample audio. A) The audio input is passed to the
state-of-the-art subword ASR model. B) The n-best lattice is
converted to the Subword WCN. C) From the subword WCN,
we formulate a new Fused WCN where we combine the sub-
word entries deterministically and form fused entries. D) By
using a lexicon-driven shallow parser, we construct the En-
riched WCN from the fused WCN by incorporating the infor-
mation from the shallow parser. E) Final selection proceeds
based on EBM scores in the enriched WCN.

subword-based language model, forming a hybrid ASR system.
This system converts the subword-based ASR lattice into an
ASR word confusion network (WCN) [8], which is refined
using a lexicon-driven shallow parser [9]. The parser filters
invalid combinations, lists morphological interpretations, seg-
ments compound words, and handles sandhi. Using an energy-
based model (EBM) framework, we recalibrate scores in the
WCN to improve accuracy [10], as shown in Figure 3.

Building on this foundation, we introduce the first large-
scale speech-text dataset in Hindi using our tool, VAgyo-
jaka, to capture human-human spoken conversations. We have
conducted extensive experiments using several state-of-the-art
models, including wav2vec [1, 11], whisper [12, 13], and large
language models like ChatGPT [14]. The experimental results
reveal significant potential for improvement, particularly within
the context of Hindi ASR. This underscores the need for further
advancements and innovations in modeling techniques to bet-
ter handle the linguistic complexities and variability inherent in
Hindi and other low-resource languages.

3. Result
Figure 4 shows the performance of ASR systems for Sanskrit,
Telugu, and Gujarati languages using different combinations of
scripts and language model units. We observe that the use of
SLP1 as a graphemic representation scheme performs best for
all three languages [4]. The training datasets consist of 56 hours
for Sanskrit, 36 hours for Telugu, and 33 hours for Gujarati.

Table 1 compares the word error rate (WER) for all the
ASR systems. We find that the subword-based system, Vak-
BPE outperforms the word-based system, Vak-Word, by a con-
siderable margin with a decrement of 19.03 WER. Moreover,
we found that the search space enriched with linguistic infor-
mation exceeds the state-of-the-art Vak-BPE system. Among
all the search space enrichment approaches, Morph-WCN-EBM

Figure 4: Word Error Rate (WER) comparison across different
language models and scripts. (NS refers to Native Script, Word-
based and BPE indicates different language model unit)

Method DEV TEST
Vak-Word 35.68 42.52
Vak-BPE 18.62 23.49

Morph-NBest-EBM 17.80 22.41
Morph-WCN-morphLM 16.18 20.26

Morph-WCN-EBM 14.15 16.31
Table 1: WER for ASR systems using different methods

performs the best with a WER of 16.31 [10].

Strategy Vak-BPE Morph-
NBest-EBM

Morph-
WCN-EBM

Compound
Analysis 43.33 44.01 55.67

Syncretism 46.25 47.28 59.47
Homonymy 51.54 52.57 64.79

Table 2: Results for linguistic analysis for the three different
ASR configurations. F-score is used as the metric

Table 2 shows the results of the morphological analysis
for all three systems. Our proposed Morph-WCN-EBM sys-
tem provides state-of-the-art results in identifying the correct
morphological tags, stems, and word forms with an F-score of
75.63. Since Sanskrit is a fusional language where morpheme
encodes multiple grammatical categories, it is a tough challenge
because Sanskrit has around 1,635 tags. Our system Morph-
WCN-EBM significantly improves the identification of com-
pound words with correct components and can resolve obscurity
due to syncretism and homonymy [10].

4. Contributions & Future Work
In this study, we developed a large-vocabulary ASR system
for Sanskrit using the Vāksañcayah. corpus and the VAgyojaka
post-editing tool, achieving significant improvements in Word
Error Rate (WER) with SLP1 encoding and subword-based lan-
guage models. Our methods also showed promise for Telugu
and Gujarati, suggesting broader applicability for low-resource
Indian languages. The findings underscore the potential of com-
bining subword tokenization strategies with search space en-
richment through the incorporation of morphological and lexi-
cal information in enhancing ASR systems. Future work should
be focused on creating a large-scale dataset benchmark and
findings to provide new and unique insights into LLM-enhanced
ASR.
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1. Introduction
Similar to text-based and image-based applications powered by
Artificial Intelligence (AI), recent years have seen speech-based
technologies become ubiquitous, too; from the comfort of our
own homes, we live in continuous interaction with smart de-
vices that grant us access to speech-based services. Much like
in text and image processing too, speech processing has bene-
fited from the rise of self-supervised learning (SSL), a paradigm
that seeks to extract general and robust representations of data
without supervision. Speech systems that rely on this paradigm
have systematically seen performance gains across tasks and
domains thanks to an ever growing variety of network architec-
tures, network sizes and a few large data resources. However,
just as self-supervised representations learned from speech have
been shown to be meaningful [1], they have also been shown
to be harmful, exhibiting a wide range socioeconomic and de-
mographic biases learned from unfiltered data when applied to
end-user applications [2, 3, 4, 5].

Mostly characterized by subpar system performance, sys-
tem biases against certain demographic groups have been iden-
tified for speech tasks such as speech and speaker recognition
but remain to be investigated for many speech downstream tasks
and especially for models learned through self-supervision. In
this doctoral project, we leverage existing knowledge about
these biases to figure out efficient ways to mitigate them and re-
duce performance disparities for demographic groups in disad-
vantage. We look into achieving fairness from representational
point of view rather than from a purely data-centric perspective;
i.e., we focus on ways we can learn better representations from
relevant features rather than learning better models from even
larger and higher quality datasets.

2. Related work
Recent works in speech processing have highlighted important
performance disparities across demographic groups, especially
for those based on ethnicity, dialect and gender. For example,
in terms of dialect and race, authors in [4] studied the perfor-
mance and psychological impact of a state of the art ASR sys-
tem on a set of native English speakers, all of whom are of
African-American ethnicity, and found out these speakers ex-
perience word error rates up to two times higher than White
standard American English speakers. A different study made
in a similar vein also found out ASR systems to be two to four
times less capable of correctly inferring instances of habitual
”be”, an important morpho-syntactic feature of African Ameri-
can English, than instances of non habitual ”be”, it’s counterpart
in the standard version of the language [3]. In a third differ-
ent study targeting dialect and gender, authors in [2], evaluated
Youtube’s automatic caption ASR system on five different re-

gional dialects of English, observing overall lower performance
for female speakers and speakers of highly accented variants
(such as that of Scottish English) but finding the effect of gen-
der not to be equal across dialects. Apart from these findings,
the presence of socio-economic and socio-demographic biases
in speech processing can be tracked down to much more than
just end-system performance. As shown by [6] in their study of
the VoxCeleb Speaker Recognition challenge, biases exist and
can stem from every stage of a speech processing pipeline. In
the work presented in this abstract, we focus on bias mitiga-
tion at the fine-tuning stage of an automatic speech recognition
pipeline, and which is based on an extensive analysis of acoustic
features that are similar across demographic groups. We further
describe our methodology in Section 4.

3. Motivation and Research Questions
Correcting biases in order to create fairer speech models is a
task that requires the conception and exploration of mitigation
strategies at different levels of the development and that ne-
cessitates of more advanced techniques than simply balancing
out training corpora according to textual demographic labels or
over-representing groups in disadvantage, both of which have
been shown to be insufficient to achieve fairness [7, 8]. So
given such premise, we ask ourselves the following questions:
if the information provided by demographic labels is not repre-
sentative enough of the group itself to be helpful in de-biasing
speech systems, can we leverage acoustic feature information
learned by self-supervised representations to build better train-
ing groups that will improve the performance of demographic
groups in disadvantage? And if so, do self-supervised repre-
sentations offer any advantage over features extracted directly
from audio for building such groups? We give answer to these
questions using the methodology described below.

4. Methodology
4.1. Building feature-based groups

In the first step of our proposed mitigation pipeline, we fo-
cus on building acoustically similar training groups for fine-
tuning. The main idea in this step is to build groups of data
that share similar speech features, regardless of their demo-
graphic label. We take the data from the English portion of the
CommonVoice 16.1 dataset [9] for this purpose, which contains
human annotations for three demographic categories: accent
(16 sub-categories), age (10 sub-categories) and gender (4 sub-
categories). As part of this step too, we define a set of acous-
tic features to include in our study. We take into account that
different features might have a different impact on the final per-
formance of the system, as some might be more relevant than



Figure 1: Our pipeline to build acoustically similar data groups
from self-supervised representations for ASR.

others depending on the downstream task at hand. With that
in mind, we select a variety of features that have been shown
to be relevant for speech recognition: the Log Power Spectrum
(LPS), Mel-frequency Ceptral Coefficients (MFCC) and a set
of features commonly referred to as ”Prosody” (PROS), that in-
clude the interpolated logarithm of the fundamental frequency,
voiced and unvoiced probability, zero-crossing rate and energy.
We train a feature classifier based on small feed-forward net-
work for each of these features, given the self-supervised rep-
resentations of the data in CommonVoice (we select Wav2vec
2.0 [10] as our base SSL model). Once trained, the embedded
representations are fed on a simple K-Means classifier to build
the feature-based training groups based on the clusters.

4.2. Evaluating self-supervised ASR performance on the
feature-based groups

The second step in the pipeline is using the newly discovered
training groups to fine-tune the chosen encoder on ASR using
standard CTC loss. We then assess the impact of using each
of the features on the downstream performance of each demo-
graphic. We also assess the added utility of self-supervised rep-
resentations over using the standard features extracted directly
from audio to build the training groups and compare down-
stream performances.

5. Discussion and Future Work
Once all results on the baseline are available, a natural exten-
sion of this work will be to apply the same pipeline to explore
the utility of different self-supervised representations from dif-
ferent state of the art models such as vq-wav2vec [11], Hu-
BERT [12] and WavLM [13], in reducing performance dispari-
ties across demographic groups. Another possible continuation
to this work could see the evaluation of our best performing
model (i.e., the model achieving the fairest performance across
demographics) on specific benchmarks targeting the same fea-
tures of study (accented speech, prosody-related tasks). The
next step in this doctoral project will leverage strong acoustic
features and knowledge learned from this work to attempt bias
mitigation in SSL at the pre-training stage.
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