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Abstract
Breathing patterns—the signals generated during respira-

tion—are intricately connected to speech production. The res-
piratory organs contribute to the production of speech signals
as well, and hence both breathing patterns and speech have
an impact on each other. In this Ph.D. work, time-domain
speech representation, coupled with phase-domain decomposed
speech components, is investigated as a carrier of respiratory
information. This feature set and a novel long-short-term-
memory (LSTM)-based deep architecture are introduced to ex-
tract the breathing patterns from the speech signals. The speech-
breathing data from 100 healthy college going students, while
they read a phonetically balanced text is collected to build this
model. This Ph.D. work also explores the impact of breath-
ing pattern categories on the performance of the deep model as
well as the variability of model performance observed across the
100 speakers. Furthermore, the pre-trained model is utilised to
extract breathing patterns from speech data labelled with res-
piratory disorders and human-confidence levels. The result-
ing speech-derived breathing patterns serve as a pioneering fea-
ture set for detecting respiratory disorders and gauging human-
confidence levels.
Index Terms: digital-health, health informatics, affective com-
puting, speech-breathing parameters

1. Research Problem and Motivation
Breathing pattern analysis has found its significance in the di-
agnosis of the physical and mental well-being of individuals.
Several studies are reviewed in [1] and [2] on breathing pat-
tern analysis for the detection of respiratory disorders, including
COVID-19. Similarly, psychological states and the breathing
process have an impact on each other. In [3], individuals with
high self-rated apprehension are found to have more pauses,
longer breath groups, and more interjections in their speech.
This explains the importance of analysing breathing patterns to
understand the physiological and psychological aspects of hu-
man health.

The existing techniques to measure breathing patterns in-
clude 1) visual inspection, 2) using a spirometer, 3) impedance
pneumography, 4) mercury-in-silastic strain gauges, 5) using
magnetometers, and 6) respiratory inductive plethysmography
(RIP). Visual inspection is the simplest of all, but it is prone to
errors. All other techniques require a measurement instrument
connected to the individual under observation. For example,
in RIP, a transducer is connected over the chest area to con-
vert the changes in lung volume into digital breathing patterns.
The acquisition of such patterns to enable further analysis of
the signals requires a respiratory belt along with a data acqui-
sition unit. Such conventional transducers used for capturing
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Figure 1: Two broad categories of the speech-breathing pat-
terns: speech during inhalation called ingressive and speech
during exhalation called egressive speech-breathing.

respiration-related information are intrusive and rely on expen-
sive instruments. The invasive nature of these mechanisms can
impede the accurate analysis of breathing patterns affected by
psychological states. Similarly, for investigating physiological
disorders associated with the respiratory process, infected in-
dividuals are required to visit lab setups equipped with sensor-
based instruments to analyse their breathing patterns. As an in-
dividual needs to visit a clinic for an inspection of the breathing
pattern, this is usually done only after the difficulty in breath-
ing becomes severe. The intrusive, expensive, and error-prone
mechanisms of capturing breathing patterns present the need for
a non-intrusive modality, such as speech, that provides breath-
ing information even outside of a clinical or lab setup.

2. Contributions
The main contributions of this Ph.D. work are as follows:

1. Corpus of speech-breathing data from 100 healthy college-
going students.

2. A deep network called SBreathNet is trained with the data
from 100 speakers to extract breathing patterns from speech
signals.

3. We augment the understanding of speech-breathing patterns.
As seen in Figure 1, the right breathing pattern with a sud-
den inhalation peak followed by exhalation is called egres-
sive speech-breathing. Here, the speech production happens
during exhalation. The left side of Figure 1 shows the breath-
ing pattern with a longer inhalation and a sudden drop during
exhalation. This is called an ingressive breathing pattern [4].
Here, the speech production happens during inhalation. We
introduce the impact of ingressive patterns on the model’s
performance.

4. Presenting speech-derived breathing patterns (SDBPs) as a
novel feature set for the detection of physiological and psy-
chological disorders.
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Figure 2: (a) Number of speakers belonging to seven bins of r-
value performance. (b) Breathing predictions for an ingressive
speaker.

3. Results
This section presents the results obtained with the SBreathNet
architecture for predicting breathing patterns. The performance
is calculated using Pearson’s correlation coefficient (r-value)
and breaths-per-minute error (BPME) as metrics. Further infer-
ences from the pre-trained model, SBreathNet, on two datasets
of speech: 1) labelled with respiratory disorders (Coswara [5])
and 2) labelled with human confidence levels (self-built dataset
of 51 speakers [6]) are used for the detection of respiratory dis-
orders and human confidence levels, respectively.

3.1. SBreathNet Performance

SBreathNet extracts breathing patterns with an average r-value
of 0.61 and a BPME of 2.50. The BPME is found to range be-
tween 0.3 and 7.5. The change in BPME across the speakers is
not synchronised with the r-value exhibited by them. Speakers
with a negative r-value of −0.40 and −0.21 have BPMEs of 3
and 2.1, respectively. This shows that SBreathNet captures the
breathing event equally well for speakers with low r-values.

As seen in Figure 2 (a), the number of speakers having an
r-value above 0.50 is 80. Similarly, 90% speakers have BMPE
less than 4. SBreathNet can extract breathing patterns with an
r-value above 0.50 for 80% speakers and a BPME below 4 for
90% speakers. It is observed that 14 out of 20 (70%) of the
speakers exhibiting an r-value below 0.50 (low-performers) are
ingressives. The average r-value of egressive speakers is 0.65
and that of ingressive speakers is 0.37 using SBreathNet pre-
dictions. These results suggest that ingressiveness has a consid-
erable impact on the model’s performance. Figure 2 (b) shows
the 10 s prediction for an ingressive speaker where the breathing
events are correctly identified, resulting in a BPME of only 1.2.
However, the breathing pattern prediction is inverted such that
the inhalation and inhalation pause of true breathing patterns
are predicted as expiration for the corresponding time slot. This
explains the absence of synchronisation between the r-value and
the BPME across the speakers.

SBreathNet performs equivalently well on the speech-
breathing dataset of the ComParE challenge organised at Inter-
speech 2020 [7] when compared with the performance reported
by the winners of this challenge [8].

3.2. Applications of speech-derived breathing patterns

The SDBPs obtained using SBreathNet as the pre-built model
are used for the detection of respiratory disorders and human-
confidence levels using Coswara and a self-built dataset of 51
speakers, respectively. The analysis outcome of SDBPs com-
pared to MFCCs is shown in Figure 3 (a) for the detection of
respiratory disorders in individuals counting 1 − 10 digits at a
fast speed. SDBPs perform better than MFCCs for nine disor-
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Figure 3: (a) Detection of a respiratory disorder from the
healthy class speech samples while the subjects count the dig-
its with fast speed; measured using the metric area under the
curve (AUC). Breath-fast: results using SDBPs as the feature
set; MFCC-fast: results using MFCCs as the feature set; and
Combined-fast: results with both the SDBPs and MFCCs com-
bined together as a feature set on the counting-fast speech sam-
ples. (b) The average breathing patterns for the confident and
non-confident classes.

ders (asthma, breathing difficulty (BD), chronic lung disorder
(CLD), cold, cough, COVID-19, pneumonia, sore throat (ST),
and others) and perform even better when they are combined
together. Figure 3 (b) shows the analysis outcome of SDBPs for
detecting confidence levels. An average breathing pattern of the
confident and non-confident classes is shown. Empirically, an
average area-under-the-curve (AUC) of 75.6% is achieved in
detecting non-confident individuals from confident ones. This
outcome is around 5% and 8% higher than that exhibited by
autoencoder-based representation and MFCCs, respectively.

4. Challenges
It is observed from the results that extracting breathing pat-
terns for ingressive speech is difficult. To collect more data
belonging to the ingressive class, we need to understand such
speaker characteristics. We asked further questions to the in-
gressive speakers to understand them better from psychological
and physiological perspectives. For all of them, no uniformity
of any kind of symptom is observed. Hence, collecting more
data from ingressive speakers is a challenge. Likewise, breath-
ing patterns get affected by many factors, and controlling these
impacting factors while collecting data for a specific one is a
challenge. Distinguishing between similar dysfunctions such as
asthma and BD requires a deeper understanding of the domain.
Another challenge is to identify the deep exhalations, as they do
not produce any sound. Hence, the current model gets confused
between the breathing pause and the deep exhales.

5. Future Work
In future work, we will focus on collecting more data and iden-
tifying ingressive breathing patterns accurately. Given the na-
ture of breathing patterns as features, their usability would re-
flect more when applied to lengthy speech samples of duration
greater than 30 s. In such cases, the lung volume capacity vari-
ations exhibited over a period of time will further strengthen
the analysis. We will work with longer speech samples of sub-
jects with respiratory disorders to further reinforce our analysis.
Similar to detecting human-confidence levels, we also intend
to extend this analysis to other psychological parameters such
as emotions, stress, and anxiety. With more data, we will also
focus on understanding the markers from speech that help us
understand the deep exhalations.
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