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Abstract

Personalizing a text-to-speech (TTS) model is an admiringly ad-
vantageous application. The TTS model can create a speech
for any target speaker using a limited dataset. However, many
challenges are related to using small data, such as it is hard
to generalize the model to unseen speakers, the similarity to
the target speaker being too low, and low-quality synthesized
speech in terms of prosody or naturalness, etc. Moreover, build-
ing a lightweight TTS model with a small dataset is necessary
for low computational complexity. This research firstly ex-
ploits Continuous vocoder-based statistical parametric speech
synthesis (SPSS) for speaker adaptation to reduce the compu-
tational complexity for real-time applications. Secondly, the
lowest data and training time were measured to build an effi-
cient end-to-end TTS model-based speaker adaptation. Finally,
creaky voices and interrogative sentences’ prosody were exam-
ined in an end-to-end TTS model to enhance the naturalness of
the target speakers’ synthesized speech.

Index Terms: speech synthesis, limited dataset, creaky voices,
interrogative sentences

1. Introduction
1.1. Background

TTS models synthesize a human-like speech when trained on
a large high-quality speech dataset. Customizing a TTS model
for an independent speaker requires collecting sufficient data,
which is a costly time and effort. One solution for this issue
is speaker adaptation (sometimes called speaker cloning or cus-
tomizing). The TTS model is trained on a large dataset (usu-
ally a multi-speaker or single-speaker dataset) and adapted/fine-
tuned to a limited dataset of target speakers [1]. Another issue
that TTS models suffer from is consuming or needing high com-
putational resources for training/inference of the speech. This
high-cost computational cost is due to using numerous parame-
ters because of the largely used data. Speaker adaptation is also
an essential solution for this problem by using a limited dataset.

1.2. Motivations and research goals

One crucial aspect of TTS is the robustness with which the
model should be adapted to various speakers with various
speech characteristics. Moreover, data availability is the main
challenge for speakers with limited samples. Therefore, build-
ing a TTS model-based speaker adaptation with minimum data
is demanding. Real-time inference speed using a lightweight
computational resource model is preferred. In this paper, three
directions or solutions for speaker adaptation with small data
will be discussed:

* I implemented modifications of the conception of the aver-
age TTS model (Continuous vocoder [6]) to synthesize new
target speakers and adapt to various domains. I used speaker
adaptation to enhance Continuous vocoder (SPSS) to have a
lightweight TTS model using limited data.

* | lowered target speakers’ amount of adaptation data and pa-
rameters for efficient adaptation techniques. Then, I inves-
tigated a TTS model’s end-to-end performance (Tacotron2)
with the limited target speaker data adaptation.

* | enhanced the target speakers’ synthesized speech natural-
ness. Specifically, interrogative sentences’ prosody for spon-
taneous conversational speech was improved using the target
speakers’ limited datasets. Moreover, I investigated the im-
pact of a creaky voice [7] within a synthesized speech in the
state of arts TTS models to enhance the similarity of the syn-
thesized speech to the original recording.

2. Related work

Limited data used to train TTS models has been a desirable
topic recently. Numerous vocoders have been suggested over
the past years, employing SPSS [8, 9] and neural vocoders
[10, 11]. Neural vocoders, which can synthesize incredibly
natural speech, frequently need to meet the requirements of
real-time synthesis. In applications requiring only a modest
computational complexity, conventional vocoder-based SPSS
can be sufficient. The Continuous vocoder (SPSS vocoder)
was utilized in the first objective of this research, and it was
inspired by [6], which proposed a computationally applicable
residual-based vocoder. In this vocoder, the excitation engages
two one-dimensional parameters: continuous fundamental fre-
quency (F0) and Maximum Voiced Frequency (MVF).

On the other hand, many studies tried to minimize the required
datasets. End-to-end TTS model Tacotron2 was proved to syn-
thesize one single sentence from a target speaker using a Ro-
manian dataset [12]. Guided attention was implemented in
Tacotron2 with limited Spanish and Basque data [13]. Guided
attention has reduced the lost alignment (text/ phonemes) dur-
ing the inference process.

3. Results

3.1. Speaker adaptation using Continuous vocoder

Continuous vocoder results were compared to the baseline
vocoder (WORLD [14]). The open-source Merlin [15] frame-
work was utilized to implement the experiment. An average
voice model (AVM) was created (trained on nine speakers on
the VCTK corpus [16]) and customized for the four target
speakers (two females and two males) of roughly 14 minutes.



Feed-forward neural networks (FFNN) and two versions of the
recurrent neural networks (LSTM and GRU) were utilized in
this study.

According to objective testing, the Continuous vocoder could
synthesize voices using RNN approximately equivalent to the
baseline WORLD vocoder during speaker adaptation. In addi-
tion, the MUSHRA test [17] outcomes confirmed the effective-
ness of the Continous vocoder’s speaker adaptation method by
receiving slightly lower rates than the WORLD vocoder in GRU
and LSTM (see Figure 1). In contrast, the WORLD vocoder re-
ceived higher scores than the Continous vocoder in FFNN.
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Figure 1: MUSHRA scores for the naturalness/Continuous
vocoder. Errorbars show the bootstrapped 95% confidence in-
tervals.

3.2. Speaker adaptation efficiency experiments

I investigated the dataset and training period required to con-
struct a TTS model using end-to-end TTS (Tacotron2 [18]) and
neural vocoder (WaveGlow [10]) with an unseen target speak-
ers’ datasets. A general model was trained on a multi-speaker
dataset of 88.3 hours (Hi-Fi multi-speaker dataset [19]) and
then adapted to four speakers (two females and two males).
Also, two kinds of audio qualities (clean of signal-to-noise ratio
(SNR) at least 40 dB and another data of SNR equal to 30 dB)
were investigated in the experiment.

According to the findings (see Figure 2), the Tacotron2 model,
which is trained on 100 sentences of data over a relatively short
time (checkpoint 900), delivers acceptable synthesized speech
quality. Moreover, there is no direct relation between the adap-
tation audio dataset’s SNR and the synthesized speech quality
in our experiment’s results.
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Figure 2: Average naturalness ratings of the four speakers’
speech/efficiency experiment.
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3.3. Speaker adaptation- creaky voice experiments

I investigated the impact of the creaky voice (irregular, glottal-
ization, or vocal fry) in TTS with a limited target speaker’s data
(100 sentences). I adapted a pretrained FastSpeech 2 [20] (on
LJSpeech dataset [21]) model to four target speakers. Three

adaptation data scenarios were chosen (such as frequent irregu-
lar voice, few irregular voice, and randomly chosen sentences).
The adaptation data was selected based on the creakiness per-
centage, measured automatically [22]. The results showed that
the TTS model has successfully modeled the creakiness in the
synthesized speech according to the objective evaluation. More-
over, the MUSHRA test showed that the creaky synthesized
speech obtained a lower preference than the synthesized speech
without creaky voices (see Figure 3).
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Figure 3: Average naturalness ratings of the four speakers’
speech/creaky voice experiment.
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3.4. Speaker adaptation prosody experiments-interrogative
sentences

Using a small dataset (840 and 580 sentences for male and fe-
male speakers, respectively), I developed improved English in-
tonation patterns of interrogative sentences for a TTS model
(FastSpeech 2). I adapted FastSpeech 2 to interrogative sen-
tences (first dataset) and frequently declarative sentences (sec-
ond dataset). To find the adaptation data, I looked at how of-
ten interrogative sentences appeared. The objective and sub-
jective evaluations revealed that the suggested model success-
fully created interrogative intonation prosody (see Figure 4). In
the subjective evaluation, humming voices (wordless tone) were
used to have accurate listeners’ feedback. The proposed model
(trained on interrogative sentences) obtained 62%, ground truth
humming voices received 66%, and natural sentences with
words obtained 94%.
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Figure 4: Average naturalness ratings of the four speakers’
speech/prosody experiment.

4. Future works

I would like to explore Cross-lingual (from English to Ara-
bic), i.e., adapting a pretrained Tacotron 2 model to Arabic
target speakers with a minimum amount of data. Secondly, I
plan to control the creaky voices percentage in the synthesized
speech sentences using a limited dataset. Then, I will observe
the impact of the diversity of these percentages on the similar-
ity/naturalness of the out speech.
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