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1. Key Challenges
Performance of ASR systems has improved substantially with
the use of end-to-end trained deep learning models like
Encoder-CTC [1], RNN-Transducer [2], Transformers [3] and
Conformers [4], typically trained in supervised learning or self-
supervised learning settings.

Supervised models require a significant amount of labelled
data to estimate the network weights and to generalise to new
test data, for e.g., the Whisper models [5] are trained on 680,000
hours of labeled audio data to attain SOTA WER ranging from
2% to 36% on various benchmark datasets. Since transcribing
audio is prohibitively expensive and time-consuming, most lan-
guages have only a few hours of labelled speech available. As
a result, most current-day ASR systems are limited to a small
number of resource-rich languages such as English.

Lately, self-supervised learning has gained a lot of popular-
ity wherein foundation models are ‘pre-trained’ on very large
unsupervised speech data and used for downstream tasks by su-
pervised fine-tuning and inference. The performance of down-
stream tasks is dependent on the amount of unlabelled data used
for pre-training and model complexity [6]. More pre-training
data (can range from 54,000 hours [7] to million hours [8])
yields better models and representations, but at the cost of high
training time and computing power [6].

Learning paradigms of these systems are very different
from the way humans learn: e.g., humans learn novel con-
cepts from a handful of examples leveraging on previous ex-
perience. The newly emerging framework Few-Shot Learning
(FSL) [9, 10] is a paradigm shift from prevalent large data re-
quirements and seeks an alternative to learning new concepts
from a few examples (as few as 1 to 5) per class during infer-
ence.

FSL methods belong to the class of meta-learning frame-
works [11] wherein the prior knowledge acquired from differ-
ent similar tasks is used to learn a new task quickly using very
few shots per class. The strength of the FSL framework lies
in a cross-domain training-inference scenario, where, for ex-
ample, efficient transferable models (or embedding functions
or representations) are learnt from a large training corpus in
one domain; such learnt embedding functions are used as prior
knowledge to perform few-shot inference in a possibly different
domain and with classes not seen during training, potentially
without any fine-tuning on target domain data.

2. Research Contributions
FSL methods have been applied to various tasks in computer vi-
sion, natural language processing [9, 10] and speech tasks such
as rare-word recognition [12], sound event detection [13, 14,
15] and keyword spotting [16]. FSL methods can be broadly
grouped into data-based, model-based and optimization-based
approaches based on the learnt prior knowledge [9].

Model-agnostic meta-learning (MAML) [18], an optimiza-
tion based approach (under ‘algorithm as prior knowledge’) is
the only framework that has been adapted to E2E ASR under

Figure 1: Left: Original Matching Networks (MN) by Vinyals et
al. [17]. Right: Proposed MN-CTC framework for E2E ASR

the ambit of FSL. MAML has been applied for tasks like multi-
lingual speech recognition [19, 20, 21], code-switched speech
recognition [22] and cross-accented speech recognition [23].

In contrast to above MAML-based E2E ASR under
‘algorithm-as-prior knowledge’, my thesis focuses on explor-
ing FSL techniques under ‘model-as-prior-knowledge’ for E2E
ASR in a first-of-its-kind attempt, as outlined below in the form
of a concise list of major contributions:

1. Examine FSL based on ‘model-as-prior knowledge’
I have focused on a classic and pioneering FSL framework -
Matching Networks (MN) [17], simultaneously falling within
the broad paradigms of Meta learning, Embedding learning
and Metric learning within an Episodic Training or Sampling
setting, to account for the matched condition between meta
multi-tasks during training and inference, being defined as a
N -way, K-shot FSL problem.

2. In a first-of-its-kind attempt, adapt MN to E2E ASR
We first adapted the MN formulation (originally formulated
for single image classification tasks as in Fig. 1, left panel) to
frame-wise phoneme classification. This adaptation sets the
basis for further applying the MN framework to continuous
speech recognition. [Publication 1]
For E2E ASR, I integrated MN into a Connectionist Tempo-
ral Classification (CTC) [24] loss based end-to-end training
and CTC-based prefix-decoding of continuous speech in a
network termed MN-CTC. [Publication 2]

3. Apply cross-domain FSL definition to adapt MN-CTC to
cross-lingual E2E-ASR
The primary characteristic of MN-CTC is the cross-domain
applicability of the MN theory, where the test classes are dif-
ferent from the train classes. We applied MN-CTC to cross-
lingual E2E ASR (Row 2 of Table in Fig. 2) for Indo-Aryan
and Dravidian family of languages. By this, the proposed
MN-CTC framework is highly effective for low-resource tar-
get languages yielding PERs/CERs far lower than conven-
tional cross-lingual ‘transfer learning’. [Publication 2]

4. Major departure from data-hungry deep-learning trends
Matching Networks, set in a metric-learning FSL framework
is a distance-based classifier. This intrinsically allows for
few-shot (K-shots/class) training data in the form of non-
parametrically represented support-set training vectors as ex-
ternal memory (marked “A” in Fig. 1, right panel). We show
that MN-CTC - which we derive from this framework - needs



Setting M L’ vs L Example
1 Mono-lingual M=1 L′ = L English-to-English
2 Cross-lingual M=1 L′ 6= L Hindi-to-Marathi
3 Multi-lingual M>1 L′ ∈ L Indo-Aryan-to-Hindi
4 Multi-Cross M>1 L′ /∈ L Indo-Aryan-to-Tamil

Figure 2: Top Panel: FSL pipeline involving cross-lingual infer-
ence on low-resource target language and Bottom Panel: sce-
narios arising from the above architecture

as low as 15 min of data as inference support-set to perform
cross-lingual inference on an unseen target language, and
easily surpasses the performance of transfer learning frame-
works under same few-shot conditions.

5. Explore architectural variants of the MN-CTC network
The labelled support set (annotated as ‘A’ in the right panel
of Fig. 1) plays a crucial part in the MN framework during
training and inference. For E2E ASR, we have proposed two
architectural variants of MN-CTC for generating supervised
support sets from continuous speech.
The first variant called ‘Uncoupled MN-CTC’ generates
the support set ‘outside’ the MN-architecture and the sec-
ond variant ‘Coupled MN-CTC’ generates the support set
‘within’ the MN-architecture through a multi-task formula-
tion coupling the support-set generation loss and the main
MN-CTC loss for jointly optimizing the support-sets and the
embedding functions of MN. [Publication 3]

3. Methodology
3.1. Matching Networks (MN)
Matching Networks (MN) addresses the N -way K-shot FSL
classification problem, where N (ways) is the number of classes
and K (shots) is the number of examples per class. In the orig-
inal MN framework (left panel in Fig. 1) by Vinyals et al. [17],
the query (test sample) is an image sample (x). MN embeds K-
shot samples from N classes and the test sample x into a dis-
criminative embedding space using embedding functions. Set
in a distance-based classifier framework, MN converts the dis-
tances between x and the support set samples in the embedding
space to a posterior estimate ŷ, in a Neighborhood Component
Analysis (NCA) [25] framework, used with cross-entropy (CE)
loss for learning optimal embedding functions.

3.2. Adaptation of MN to E2E ASR
MN adaptation to E2E ASR using CTC loss (MN-CTC net-
work) is depicted in the right panel of Fig. 1. Given
an input continuous speech feature vector sequence x :
x1,x2, . . . ,xt, . . . ,xT and paired phone-label sequence
ground truth z : z1, z2, . . . , zm, . . . , zM ,M ≤ T , MN-
CTC converts the distances between each xt and the support-
set samples to derive a posterior vector sequence y :
ŷ1, ŷ2, . . . , ŷt, . . . , ŷT as required by the CTC loss function
during training or by the CTC prefix-search decoding on test
continuous speech. The test query utterance x and support set

samples are mapped by the learnt embedding functions to a
highly discriminative space which allows classification of the
query samples with very few labelled examples (K-shots).

4. Results and discussions
Here, we highlight few important results/observations inferred
from the thesis directions and contributions discussed above.

4.1. Mono-lingual MN-CTC (Row 1 of Table in Figure 2)
Dataset: TIMIT [26] and Librispeech [27] corpus.
Observation: We realize low phone-error-rate (PER) /
character-error-rate (CER) with the proposed MN-CTC yield-
ing breakthroughs in very low data requirements (‘K’ shots,
with K being as small as 10 to 20 frames per phoneme class).

4.2. Cross-lingual MN-CTC (Row 2 of Table in Figure 2)
Dataset: 1) Indo-Aryan case - Hindi [28] as the source lan-
guage, Gujarati and Marathi [29] as targets. 2) Dravidian case -
Tamil as source, Malayalam and Kananda [29] as targets.
Observation: Proposed Cross-lingual MN-CTC model offers
a PER/CER advantage as high as 20-25% (absolute), over the
transfer learning baseline for target language adaptation data as
low as 15min, making it suitable for ultra low-resource E2E
ASR. Table 1 shows the CER for varying target adaptation sizes.

Table 1: Cross-Lingual MN-CTC CER results; Source Lan-
guage - Hindi, Target languages - Marathi and Gujarati

Target adaptation Marathi Gujarati
data size TL MN TL MN
15 min 41.67 22.77 41.76 16.02
30min 35.48 20.61 29.34 14.8
45min 30.7 18.31 27.7 13.45

1hr 22.25 15.35 22.38 13.36
2.5hrs 13.73 10.54 18.44 10.93

4.3. Multi-lingual (Row 3 of Table in Figure 2)
Dataset: Indo-Aryan multi-lingual model trained on Hindi [28],
Gujarati and Marathi [29]; Dravidian model on Tamil, Malay-
alam and Kananda [29]. Inference on target languages belong-
ing to the respective family.
Observation: The Multi-lingual MN-CTC offers significant
PER/CER performance advantage over a mono-lingual and
cross-lingual MN-CTC, due to enhanced embedding functions
learnt on phone classes with pooled multi-lingual data and con-
sequent better generalizability to target languages.

5. Conclusion and Future Work
My primary focus is to bring in the strength of the cross-domain
FSL property to E2E ASR and create a breakthrough in conven-
tional high-resource settings, i.e., use ‘ultra-low training data’
FSL algorithms in place of current data-hungry deep learning
systems. Future work will be along the following lines: 1) Ex-
plore ‘Multi-cross’ scenarios (Row 4 of the Table in Fig. 2)
on Indo-Aryan and Dravidian language family to establish su-
perior performance at ultra low-resource setting, 2) Set up FSL
baselines like prototypical-network, relation-network, MAML
based E2E ASR and non-FSL baselines like pre-trained foun-
dation models.
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